

A Plan for Low Energy Science at the 88-Inch Cyclotron in the Next Decade

Working Group: R.M.Clark, K.E.Gregorich, V.Koch, D.Leitner, A.O.Macchiavelli, L.W.Phair, and P.A.Vetter

"Plans are useless, but planning is indispensable".

- Dwight D. Eisenhower

"A good plan violently executed now is better than a perfect plan next week".

- George S. Patton

"Life is what happens to you while you are busy making other plans".

- John Lennon

A Plan for the Next Decade: Timeline

Advantages From Operation of 88-Inch

- BASE Program
 - Vital to defense and aerospace communities
- In-house Science Programs
 - Unique heavy element research effort
 - Applied (surrogate and n-beam) work (AFCI and Defense)
 - LIBERACE science: structure, reactions, astrophysics
 - Home to fundamental symmetries program
 - Home to GRETINA/GRETA development
 - Home to VENUS ion-source development
- Training post-docs and students.
 - Connections to UCB Physics, Chemistry, and Nucl. Eng.
- Retention of broad stable beam capability.
 - Complementary role in the radioactive beam era

In-House Low Energy Science Program: 2016

- Upgraded 88-Inch able to host scientific and applied programs including a stable-beam program with GRETA (full 4π array).
- 88-Inch is home to two world-leading large acceptance separators, BGS and Omnibus. Unique scientific programs:
 - a) Heavy element science
 - Chemistry and atomic properties
 - Transfermium spectroscopy (prompt and delayed)
 - Mass measurements
 - b) Far-from-stability studies complementary to RIB efforts
 - Gamma-ray studies of n-rich nuclei via DIC
 - Decay studies (and tagging) of rare isotopes
- CLAIRE: National accelerator facility for nuclear astrophysics with low-energy high-intensity beams. Allied with DUSEL.

FY07/08

- a) Extensive program of Nuclear Structure experiments, defense and AFCI work. LIBERACE will be coupled with GRETINA modules. (LDRD funded \$300K). Extend Si detection to $\sim 4\pi$ by adding Si box to existing annular set-up. \$50K.
- b) New effort on transfermium decay spectroscopy (especially high-K isomers). Focal plane detectors (especially a DSSD) for BGS. \$50K.
- c) Extended effort on physics beyond the Standard Model. New neutral atom trapping effort on ^{18,19}Ne. \$150K.
- d) New generation of heavy element chemistry experiments. Pu targets and dedicated chemistry laboratory. BGS as pre-separator. \$250K.
- e) New astrophysics program looking towards DUSEL. R&D for CLAIRE. (LDRD funded \$220K).

Some examples from the above...

LIBERACE Upgrades

a) Add GRETINA Modules

- Digitial Signal Processing (DSP) for Clovers and Si detectors
- Add GRETINA Modules
- Higher E_{γ} efficiency (high- E_{γ})

b) STARS and STRIPES

- Currently annular Si detectors (STARS)
- Add planar Si detectors box (STRIPES)
- Increased particle detection efficiency

Fine Structure of Pygmy Resonances

- Soft dipole mode
- Small fraction of E1 strength
- Usually studied in (γ, γ')

N. Ryezayeva et al, PRL 87 272592 (2002)

- Using the ²⁰⁸Pb(¹⁷O, ¹⁷O') reaction with LIBERACE+STARS
- Population and decay of different states compared with (γ, γ') experiments
- Test experiments (2005/06) revealed potential of method (see below).
- Need large increase in statistics
 - → Cooling of Si detectors (> Dec 2006).
- → Add GRETINA modules

16C - Cracking the Egg

Results from RIKEN

Neutron-dominant quadrupole collective motion in 16 C

- We can study ¹⁶C via the ¹¹B(⁷Li,2p) reaction with LIBERACE+STARS
 - \rightarrow Measure lifetime via Doppler shift techniques and deduce B(E2)
- Shown utility of 2p-evaporation studies of sd-shell light nuclei already
- ⁹Be(¹¹B,2p)¹⁸N to resolve anomalous 1- isomeric decay

 \sim 4 π p-detection efficiency of STARS+STRIPES ideal for such studies

β-ν Correlation Measurements

Currently: laser trapping of ²¹Na for precision electroweak tests

Laser trapped samples are:

- Cold
- Isotopically pure (contaminant-free)
- Held in vacuo: no scattering (not very dense)
- Polarizable

Ideal source for:

Full kinematic detection of a beta decay

Beyond Standard Model Physics search:

- Non "Vector minus Axial Vector" couplings
- New Scalar Bosons
- Second class currents from quark mass hierarchy
- Massive sterile neutrinos
- Left-Right symmetric models
- Sleptons...

Future: ^{18,19}Ne "cleanest" test for scalar or tensor currents outside Standard Model

BGS Focal Plane Studies: K-Isomers in Transfermium Nuclei

Nuclear isomers in superheavy elements as stepping stones towards the island of stability

R.-D.Herzberg et al., Nature 442 (2006) 896, S.Tandel et al., Phys. Rev. Lett. 97 (2006) 082502

Heavy Element Experiments with Pu Targets

Pu targets allow access to longer-lived neutron-rich isotopes A dedicated chemistry lab is needed near BGS (used as pre-separator)

CLAIRE: A National Accelerator for Nuclear Astrophysics

The Stages of CLAIRE

- 1) Gas jet target (~ 10^{18-19} particles/cm²). Beams from 88-Inch to measure " γ -process" reactions: e.g., 96 Ru(α , γ), 124 Xe(α , γ), 136 Ce(α , γ)
- 2) Add HV Platform
- 1⁺ ion source, analyzing magnet, focusing optics. Provide intense light-ion beams for measurement of key H and He burning reactions.
- 3) *Add RF Cavities and ECR Source* Reactions in CNO and Ne-Na-Al Cycles.

- Meet the need identified in last LRP of a "…dedicated, high intensity (~mA), low-energy (<3MV), accelerator.."
- Required in order to understand stellar evolution especially H and He burning.

Two examples of key reactions

3 He(4 He, γ) 7 Be

- Crucial to understanding of solar neutrino flux.
- Needed to 1% accuracy in region of Gamow window

$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}$

- Determines fate of intermediate mass stars (black hole vs. neutron star).
- Fixes C/O ratio which influences all later nuclear burning stages.

Strong Connection with DUSEL (proposal for gas-jet target)

FY09/10

- a) Decay spectroscopy in low background environment. Investigate SHE. RF-Catcher built and coupled to BGS. \$200K. Analyzer magnet for mass identification of SHE. \$180K.
- b) *The Omnibus: unique device for heavy element and far-from-stability studies.* R&D for Omnibus large acceptance spectrometer.
- c) Investigations of γ -process reactions in inverse kinematics. CLAIRE Stage 1 gas-jet target using beams from the 88-Inch. \$700K.

RF Catcher

"The Argonne Catcher"

- Reaction products separated from beam by the BGS
- Stopped in high-purity He gas cell retain 1⁺ charge
- RF field pushes ions towards exit where they are skimmed
- Re-accelerated to moderate potentials (10kV), mass separate.
- Decay studies in low background environment
- Chemistry studies on isotopes with > ms lifetimes
- Mass identification of heaviest atoms (analyzer magnet)

Omnibus

Concept: A superconducting, dual-mode, large-acceptance spectrometer.

Mode 1: Gas-filled "better than BGS" separator.

Mode 2: Gas-less "PRISMA-like" spectrometer.

- Study nuclei far-from-stability populated in deep-inelastic reactions.
- A large-acceptance spectrometer of the type needed at future FRIB.

GRETINA/GRETA+Omnibus: Far-From-Stability Studies

- Omnibus in gas-less mode allows Z and A identification ($\Delta Z/Z\sim1/80$, $\Delta A/A\sim1/300$) of species formed in deep-inelastic reactions (non-selective population of high-I states).
- GRETA allows us to extend reach for γ -spectroscopy by several more neutrons.
- Complementary to radioactive-beam studies of nuclei far-from-stability

Some Physics Examples

- Structure of nuclei near doubly magic (Approaching ⁷⁸Ni and ¹³²Sn).
- Stability of shell gaps in n-rich nuclei (Recent controversy in ⁵²⁻⁵⁴Ca).
- Highly deformed states in n-rich S-Ar (Overlap of theories).
- New exotic excitation modes(Pygmy resonances in Ca isotopes)
- Shape evolution and critical-point nuclei in n-rich regions. (N-rich Zr-Mo, Ce-Nd, and Er-Yb)

Loci of
$$P = \frac{N_p N_n}{N_p + N_n} \sim 5$$

Near stability this reflects rapid change from vibrational to rotational behavior

Will this hold true in n-rich nuclei?

FY11/12

- a) *High-precision mass measurements and atomic physics of heavy elements.* Penning trap combined with RF catcher at end of BGS. \$700K.
- b) *Transfermium spectroscopy with most powerful set-up conceivable.* Gretina coupled to BGS at target position. \$250K.
- c) Construction of Omnibus. \$5000K.
- d) *High intensity* (~0.1 *A*) *light ion beams for H and He burning experiments*. CLAIRE Stage 2 HV platform with gas-jet target. \$700K.

BGS+GRETINA: Transfermium Spectroscopy

- 48 Ca+ 208 Pb→ 254 No+2n σ ~2 μb
- 30

 Kα2

 Kα1

 Kβ1

 10

 20

 300

 Sep + FMA

 456, 18+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 498, 20+

 49
- New generation of prompt transfermium gamma-ray spectroscopy.
- Detailed γ-γ spectroscopy on even-even
 Z>100 nuclei possible.
- γ-spectroscopy on odd-A nuclei
- γ -spectroscopy of Rf (Z=104) possible ($^{50}\text{Ti}+^{208}\text{Pb}\longrightarrow^{256}\text{Rf}+2\text{n}$ with $\sigma\sim20\text{ nb}$).

Single-particle orbits same as those in predicted spherical SHEs

FY13/14

- a) Omnibus in gas-filled mode used for heavy element physics and chemistry. First scientific campaigns with Omnibus.
- b) GRETA+Omnibus in gas-less mode for DIC experiments on n-rich nuclei. GRETA on construction path. Host 2π array (combined with Omnibus).
- c) *R&D for CLAIRE stage 3 to study of CNO and NeNa cycles with heavier beams.* CLAIRE Stage 3 ECR source and RF cavities added.

FY15/16

- a) CLAIRE is National Accelerator Facility for nuclear astrophysics Add RF cavities to CLAIRE to create high intensity LINAC.
- b) Omnibus and BGS used for program of heavy element and far-from-stability studies.

Omnibus and BGS are versatile large acceptance spectrometers.

- c) Full program on hyperdeformation, transfermium spectroscopy, new excitation modes in n-rich nuclei, etc Host completed 4π GRETA for stable beam campaigns.
- d) Host scientific and applied programs at 88-Inch.
- 88-Inch remains versatile stable beams machine.

A Possible Road to a High-Intensity LINAC

A Plan for the Next Decade: Timeline – Growth of Manpower 09 08 10 12 13 2006 072016 Gretina/ GRETA Campaign II Gretina **GRETA** Physics Campaign I **GRETA** Gretina Modules AFCI/NNSA Liberace Neutral Atom Traps Penning Focal Plane Gretina RF Catcher **BGS** → BGS Campaign Detectors Chem. Lab. NEED SCIENTIST (TRANS-ACTINIDE PHYSICS) R&D **Omnibus** Omnibus Omnibus NEED SCIENTIST (ASTROPHYSICS) R&D Stage 1 Stage2 Stage3 **→**CLAIRE **CLAIRE** +RF Cavities +HV Platform Gas Jet Target NEED ACCELERATOR PHYSICIST 88-Inch Center region, buncher, injection etc 88-Inch 4th Gen ECR LINAC **VENUS**

NEED ENGINEERS, TECHNICAL AND MECHANICAL SUPPORT, AND POSTDOCS

Mapping to DOE/NSAC Milestones

Year	Milestone / 88-Program / Experiment
2006	Measure changes in shell structure and collective modes as a function of neutron and proton number from the proton drip line to moderately neutron-rich nuclei. <u>LIBERACE program</u> using light-ion fusion-evaporation, transfer, and incomplete fusion. Example – lifetime measurement of excited states in ¹⁶ C, the egg nucleus.
2007	Measure properties of the heaviest elements above Z~100 to constrain and improve theoretical predictions for super-heavy elements. BGS program on heavy element production, structure, and chemistry. Example – K-isomer studies at BGS focal plane up to Sg (Z=106) nuclei.
2009	Extend spectroscopic information to regions of crucial doubly magic nuclei far from stability such as Ni-78. Deep-inelastic reactions using <u>GRETINA/OMNIBUS</u> and intense beams from <u>VENUS</u> . Example – ²³⁸ U+ ⁴⁸ Ca to investigate N=32,34 sub-shells and push towards doubly magic ⁶⁰ Ca.

Mapping to DOE/NSAC Milestones

Year	Milestone / 88-Program / Experiment
2010	Complete initial measurements with the high resolving power tracking array, GRETINA, for sensitive studies of structural evolution and collective modes in nuclei. Use <u>GRETINA</u> modules and full 1π-array for physics campaigns at <u>88-Inch</u> . Example – pygmy resonance structure in ²⁰⁸ Pb from H.I. inelastic scattering. Example – transfermium spectroscopy (prompt) up to Rf (Z=104) using BGS.
2010	Reduce uncertainties of the most crucial stellar evolution nuclear reactions (e.g. $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$) by a factor of two, and others (e.g., MgAl cycle) to limits imposed by accelerators and detectors. Development and use of <u>CLAIRE</u> (Stages 2 and 3) Example – direct measurement of $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$.
2011	Measure neutron capture reactions, including s-process branch-point nuclei, to constrain s-process isotopic abundances. Surrogate techniques developed with LIBERACE for AFC studies (currently, deducing n-induced actinide cross-sections reactions). Example – 153 Gd(n, γ) determined from surrogates such as 154 Gd(α , α ') and 155 Gd(3 He, α)

Plan Rests Heavily on 88-Inch Operations

- Current funding for 88-Inch will mean rapid end to science program at the accelerator.
- Requested funding brings us to "sustainable operation".
- Scientific plan requires upgrades and improvements. (e.g. coupling VENUS to 88-Inch to give full range of intense heavy-ion beams for heavy element research).
- Projects like CLAIRE and Omnibus require increased manpower and technical support (accelerator physicist, engineers, techs...)
- We want to host "National Facility"-scale scientific programs. (GRETINA/GRETA, BGS/Omnibus, CLAIRE...)

Summary

- Developed a strong scientific vision for the next decade
- Aligned with current priorities of the National Low Energy Program
- 88-Inch is central to the plan
- Providing an essential stable beam capability in the U.S.
 - Vital to the BASE and applied programs
 - Unique heavy element research effort
 - New opportunities in nuclear structure
 - Training the next generation
- Developing new facilities and apparatus for U.S. nuclear science
 - GRETINA/GRETA
 - BGS/Omnibus
 - CLAIRE

"Give us the tools and we will finish the job!"